Class: SequenceTest
- Includes:
- MoreMath
- Defined in:
- tests/sequence/refinement_test.rb,
tests/sequence_test.rb
Constant Summary
Constants included from MoreMath
MoreMath::Infinity, MoreMath::STD_NORMAL_DISTRIBUTION, MoreMath::VERSION, MoreMath::VERSION_ARRAY, MoreMath::VERSION_BUILD, MoreMath::VERSION_MAJOR, MoreMath::VERSION_MINOR
Instance Method Summary collapse
- #setup ⇒ Object
- #test_book ⇒ Object
- #test_cover ⇒ Object
- #test_flat ⇒ Object
- #test_half ⇒ Object
- #test_rand ⇒ Object
- #test_rasi ⇒ Object
- #test_refinement ⇒ Object
- #test_sequence_push ⇒ Object
- #test_z_score ⇒ Object
Instance Method Details
#setup ⇒ Object
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# File 'tests/sequence_test.rb', line 9 def setup @flat = Sequence.new([0.3] * 100) @flat_fuzzy = Sequence.new( [ 0.291296142070089, 0.398027886480809, 0.23101231921608, 0.340627534773153, 0.254242992113383, 0.205044980114447, 0.278185292370019, 0.291682510899134, 0.261657208149687, 0.259844137242866, 0.378499162508619, 0.229358104972725, 0.386112073235523, 0.235255070067096, 0.296721262492287, 0.314698077842112, 0.363272733105109, 0.252507159666997, 0.24662025484673, 0.267331187480918, 0.250067060724856, 0.284270210340375, 0.262626100532033, 0.352433737639362, 0.26289285183689, 0.320853587421585, 0.311156494750873, 0.334225510831559, 0.356205648289854, 0.390488123286748, 0.232295923957093, 0.306018392326888, 0.226951061989688, 0.214593004467917, 0.28960026747272, 0.265265575971784, 0.281799797229565, 0.337363136532618, 0.342475071004423, 0.284553882868128, 0.389206786931739, 0.351602477407745, 0.387218788482334, 0.251003385993573, 0.257866093151574, 0.328824195781741, 0.328242240833557, 0.318885903421821, 0.319274078029297, 0.29658003664557, 0.24884905382522, 0.301770636812583, 0.248911378817175, 0.275471776328434, 0.220091513752346, 0.283076025940448, 0.388218608044549, 0.283229339831472, 0.224570945957831, 0.362485839646397, 0.221550677368212, 0.269482540591461, 0.339070334243095, 0.325182999080969, 0.308728933369353, 0.3863941656383, 0.202792339314435, 0.362856265274183, 0.265505144702292, 0.353077334823915, 0.324128317440701, 0.296975637938554, 0.331591291884613, 0.205993447724166, 0.214480100701257, 0.344614724259284, 0.370516595329498, 0.207412716360969, 0.314721036012706, 0.228984115281106, 0.259032440399333, 0.326352618555389, 0.353756258146666, 0.230771059239658, 0.250581960820831, 0.21462520718052, 0.241570172219703, 0.296495456059297, 0.336874993277199, 0.399203721142938, 0.330151086176299, 0.327699314698143, 0.235627029696985, 0.325564466304218, 0.398295977228244, 0.33192554316584, 0.22526704197204, 0.342117813790757, 0.32678523559579, 0.214938036987578 ] ) @flat_fuzzy2 = Sequence.new( [ 0.234651800685522, 0.291677132057536, 0.381325747665659, 0.37072453863211, 0.368865699927557, 0.35787506718781, 0.350720373167135, 0.258635475849321, 0.31707597552194, 0.307893709010183, 0.237849819950067, 0.315881610046543, 0.201585641064648, 0.344368312712124, 0.34501166666737, 0.294042914293632, 0.211771331394304, 0.363815509779845, 0.33673412152282, 0.37498088769697, 0.201244093764913, 0.236387765961558, 0.296850838293593, 0.223829530755105, 0.213694650150962, 0.227416795706971, 0.200625724917622, 0.31227957802719, 0.385983037604518, 0.287242927867868, 0.258470258047964, 0.344169516126964, 0.26994416010751, 0.249768846393261, 0.354426097251265, 0.34021066927398, 0.307077285175548, 0.3497224779728, 0.254650791783532, 0.285180048375893, 0.201603698883297, 0.314417350151038, 0.320909639401826, 0.287679809618447, 0.328814685203504, 0.370476190838299, 0.291359505243309, 0.273781936455096, 0.325113918862285, 0.367110740063297, 0.247073598694453, 0.350942986897521, 0.232261700593331, 0.236635735267053, 0.240796903369692, 0.323428956239516, 0.324614910738737, 0.237871567371432, 0.310816928958706, 0.264609945655404, 0.236819188672949, 0.28398352994042, 0.366840181124702, 0.339882426068036, 0.397478482750453, 0.379375601208701, 0.281206116730092, 0.203947998858132, 0.231558650797902, 0.380785793096893, 0.334270739370193, 0.266229655641688, 0.315762224650585, 0.243378114262551, 0.294001949668671, 0.247508966656796, 0.382845661950797, 0.369479413879656, 0.241683415140724, 0.218541361179393, 0.319914186441019, 0.310250120051708, 0.234697684147101, 0.34734046492662, 0.218217334366937, 0.312537298293074, 0.374319776312122, 0.392178633368011, 0.314428694398314, 0.386204177791726, 0.359061970124816, 0.362334074442194, 0.229293408035385, 0.313763536361359, 0.239344793134688, 0.265237324138875, 0.329259743982286, 0.351767216150251, 0.211193779699827, 0.258235773260784 ] ) @flat_higher = Sequence.new( [ 0.417776755544947, 0.326476805772892, 0.332887733006402, 0.410565271773857, 0.426114386030809, 0.435935520406595, 0.339995159533461, 0.364761157546518, 0.378397233333935, 0.35210733002035, 0.330688506187733, 0.492648864412129, 0.33833199089868, 0.42789271416588, 0.302423735510181, 0.305407403523733, 0.408725319360953, 0.444623946541953, 0.494162827022184, 0.386239353430498, 0.306437290600178, 0.376703331326491, 0.419906847790677, 0.301955977987602, 0.487468198801442, 0.312290516021979, 0.495906290662686, 0.303379939018008, 0.460384318463054, 0.473534870478338, 0.333912270251847, 0.460143618655486, 0.419257177279749, 0.355072829732943, 0.453419475031392, 0.468523177257953, 0.405173514106214, 0.490981451264441, 0.333761262319564, 0.405754543238307, 0.495673694657207, 0.302783349166472, 0.432418922874345, 0.329915804259514, 0.356588738342812, 0.354349707229742, 0.452693480248568, 0.474877692732008, 0.405383243600942, 0.402915847080871, 0.492915699075631, 0.462094206093751, 0.339883346924172, 0.451846443788079, 0.464163288957183, 0.405878012725365, 0.467568948869427, 0.419585038305752, 0.422900365624952, 0.494116259378179, 0.300073213028546, 0.474018244228735, 0.38822872923958, 0.441707083196939, 0.406814346112675, 0.403958151779294, 0.307247538830431, 0.409650643221185, 0.493148685003474, 0.36058138779566, 0.36321317486353, 0.393068747347969, 0.468879326612198, 0.425234138346863, 0.421949132207673, 0.306005645410334, 0.439055703332639, 0.317183300984821, 0.470848293063698, 0.440820107004846, 0.438285035336276, 0.434787376714648, 0.453596753001295, 0.399893734859051, 0.458116608707833, 0.330973155542121, 0.31666421784907, 0.467682075506155, 0.452806591013364, 0.379423936292945, 0.357212688143182, 0.385848611013958, 0.349586136874291, 0.46683976269393, 0.484776275752459, 0.30829081820033, 0.41637633029041, 0.350847171677106, 0.416615749876575, 0.382674729559805 ] ) @half = Sequence.new(Array.new(100) { |i| 0.5 * i }) @rand = Sequence.new(rand = [ 97, 26, 9, 78, 15, 86, 82, 24, 57, 67, 46, 86, 28, 50, 71, 92, 18, 19, 16, 70, 80, 45, 26, 4, 16, 55, 15, 94, 12, 73, 89, 97, 10, 2, 77, 35, 76, 46, 48, 31, 39, 52, 82, 53, 88, 90, 1, 39, 77, 71, 37, 37, 50, 19, 60, 48, 0, 13, 62, 34, 90, 28, 42, 9, 63, 82, 43, 98, 86, 3, 94, 5, 79, 11, 16, 0, 90, 81, 42, 64, 76, 92, 25, 3, 90, 51, 15, 0, 74, 98, 93, 90, 14, 81, 85, 28, 30, 73, 32, 88]) @rand_up = Sequence.new(Array.new(rand.size) { |i| rand[i] + 10 * i }) @rand_down = Sequence.new(Array.new(rand.size) { |i| rand[i] - 10 * i }) @rasi = Sequence.new( [ 0.0, 11.7813239550446, 23.8742291678261, 0.368124552684678, 20.233654312272, 7.64120827980215, 61.609239533582, 69.346191849821, 66.7019061146592, 26.2399845215146, 2.85316954888546, 29.4686175218607, 15.9684276548523, 15.9684276548523, 36.3446282769615, 66.5739561406607, 85.9585699842718, 75.9895132951814, 9.24615891330947, 7.53001816521557, 22.335839587114, 32.2774961648149, 31.2905869781976, 15.1700831170561, 6.1413284446509, -2.95898288510399e-14, -4.63732964187926, -2.2382089844837, -2.20874731610807, -0.0, -20.5724838302366, -60.2401453217246, -39.2961753815653, -59.9472827106431, -47.051006728233, -4.75528258147577, -20.6280322653025, -43.913176050844, -78.8441115458335, -30.4509047725893, -38.0422606518061, -77.8151265120777, -4.22163962751007, -32.3615561965831, -42.4419205675787, -40.5571824081806, -6.2627977633223, -5.52186829027017, -6.96331684061593, -10.4026583858372, 3.8595428936139e-15, 9.0239928166299, 12.9318741325725, 34.9718325050444, 46.7301063878664, 49.3739611925678, 58.1865040039386, 30.8205297110316, 36.3061007965867, 29.8592927313786, 88.4482560154493, 54.0257987900779, 16.9664543832806, 92.8164857438293, 62.8663840466361, 78.9376908524978, 41.6220444134369, 78.5224970716874, 35.4436091676863, 66.4010692750828, 14.6946313073118, 19.2701469640686, 31.6587115308823, 15.1700831170561, 1.25333233564304, 1.83690953073357e-15, -4.76266287544359, -17.6569819887047, -12.1481102385944, -39.5038012763407, -20.5724838302365, -28.0664313430763, -20.8038575549463, -10.1319351060242, -10.8579246295922, -33.2869780703304, -77.6006928075664, -21.956588025422, -44.9112027792722, -56.9726605422639, -19.0211303259031, -80.5296076694757, -15.1979026590363, -51.6243872659778, -45.1801089912934, -54.6640284631999, -17.3431322676617, -21.719348608396, -11.937114583913, -3.38399730623621 ] ) @rasi_mean = Sequence.new([ 3.48 ] * 100) @book = Sequence.new( [ 47, 64, 23, 71, 38, 64, 55, 41, 59, 48, 71, 35, 57, 40, 58, 44, 89, 55, 37, 74, 51, 57, 50, 60, 45, 57, 50, 45, 25, 59, 50, 71, 56, 74, 50, 58, 45, 54, 36, 54, 48, 55, 45, 57, 50, 62, 44, 64, 43, 52, 38, 59, 55, 41, 53, 49, 34, 35, 54, 45, 68, 38, 50, 60, 39, 59, 40, 57, 54, 23 ] ) end |
#test_book ⇒ Object
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# File 'tests/sequence_test.rb', line 277 def test_book assert_equal 70, @book.size assert_in_delta 51.25, @book.mean, 1E-2 assert_in_delta 49.70, @book.geometric_mean, 1E-2 assert_in_delta 47.98, @book.harmonic_mean, 1E-2 assert_in_delta 148.36, @book.variance, 1E-2 assert_in_delta 12.18, @book.standard_deviation, 1E-2 assert_in_delta 23.76, @book.standard_deviation_percentage, 1E-2 assert_in_delta 12.26, @book.sample_standard_deviation, 1E-2 assert_in_delta 23.93, @book.sample_standard_deviation_percentage, 1E-2 assert_in_delta 3588.0, @book.sum, 1E-2 assert_in_delta 23, @book.min, 1E-2 assert_in_delta 89, @book.max, 1E-2 assert_in_delta(43.75, @book.percentile(25), 1E-2) assert_in_delta 51.5, @book.median, 1E-2 assert_in_delta 58.25, @book.percentile(75), 1E-2 assert_in_delta(-0.0952, @book.linear_regression.a, 1E-4) assert_in_delta(54.5420, @book.linear_regression.b, 1E-4) assert @book.linear_regression.slope_zero? assert_in_delta 0.0249, @book.linear_regression.r2, 1E-4 assert_in_delta 14.5, @book.interquartile_range, 1E-4 assert_equal 7, @book.detect_outliers[:high] ought = [1.0, -0.39, 0.3, -0.17, 0.07, -0.10, 0.05, 0.04, -0.04, -0.01, 0.01, 0.11, -0.07, 0.15, 0.04, -0.01 ] @book.autocorrelation[0, ought.size].zip(ought) do |x, x_o| assert_in_delta x, x_o, 8E-2 end assert @book.detect_autocorrelation(10)[:detected] assert_equal [3, 4, 9, 12, 18, 14, 4, 5, 0, 1], counts = @book.histogram(10).counts assert_equal 70, counts.inject { |s, x| s + x } assert @flat.linear_regression.residuals.all? { |r| r.abs <= 1E-6 } end |
#test_cover ⇒ Object
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# File 'tests/sequence_test.rb', line 312 def test_cover assert @flat.cover?(@flat) assert @flat_fuzzy2.cover?(@flat_fuzzy2) assert @flat_fuzzy.cover?(@flat_fuzzy) assert @flat.cover?(@flat_fuzzy) assert_operator @flat.suggested_sample_size(@flat_fuzzy), '>', 1000 assert @flat.cover?(@flat_fuzzy2) assert_operator @flat.suggested_sample_size(@flat_fuzzy2), '>', 9000 assert @flat_fuzzy.cover?(@flat) assert_operator @flat_fuzzy.suggested_sample_size(@flat), '>', 1000 assert @flat_fuzzy2.cover?(@flat) assert_operator @flat_fuzzy2.suggested_sample_size(@flat), '>', 9000 assert !@flat.cover?(@flat_higher) assert !@flat_higher.cover?(@flat) assert !@flat_fuzzy.cover?(@flat_higher) assert !@flat_fuzzy2.cover?(@flat_higher) assert !@flat_higher.cover?(@flat_fuzzy) assert !@flat_higher.cover?(@flat_fuzzy2) assert @flat_fuzzy.cover?(@flat_fuzzy2) assert_operator @flat_fuzzy.suggested_sample_size(@flat_fuzzy2), '>', 4000 assert @flat_fuzzy2.cover?(@flat_fuzzy) assert_operator @flat_fuzzy2.suggested_sample_size(@flat_fuzzy), '>', 4000 assert @rasi.cover?(@rasi_mean) assert_operator @rasi.suggested_sample_size(@rasi_mean), '>', 10_000 assert @rasi_mean.cover?(@rasi) assert_operator @rasi_mean.suggested_sample_size(@rasi), '>', 10_000 assert @rasi.cover?(@flat) assert_operator @rasi.suggested_sample_size(@flat), '>', 500 assert @flat.cover?(@rasi) assert_operator @flat.suggested_sample_size(@rasi), '>', 500 end |
#test_flat ⇒ Object
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# File 'tests/sequence_test.rb', line 172 def test_flat assert_equal 100, @flat.size assert_in_delta 0.3, @flat.mean, 1E-8 assert_in_delta 0.3, @flat.geometric_mean, 1E-8 assert_in_delta 0.3, @flat.harmonic_mean, 1E-8 assert_in_delta 0, @flat.variance, 1E-8 assert_in_delta 0, @flat.standard_deviation, 1E-8 assert_in_delta 0, @flat.standard_deviation_percentage, 1E-8 assert_in_delta 0, @flat.sample_standard_deviation, 1E-8 assert_in_delta 0, @flat.sample_standard_deviation_percentage, 1E-8 assert_in_delta 30, @flat.sum, 1E-8 assert_in_delta 0.3, @flat.min, 1E-8 assert_in_delta 0.3, @flat.max, 1E-8 assert_in_delta 0.3, @flat.percentile(25), 1E-8 assert_in_delta 0.3, @flat.median, 1E-8 assert_in_delta 0.3, @flat.percentile(75), 1E-8 assert_equal 100, @flat.histogram(10).each_bin.first.count assert @flat.linear_regression.residuals.all? { |r| r.abs <= 1E-6 } assert_in_delta 0.0, @flat.linear_regression.r2, 1E-8 end |
#test_half ⇒ Object
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# File 'tests/sequence_test.rb', line 193 def test_half assert_equal 100, @half.size assert_in_delta 24.75, @half.mean, 1E-8 assert_in_delta 0.0, @half.geometric_mean, 1E-8 assert_equal 'NaN', @half.harmonic_mean.to_s assert_in_delta 208.31, @half.variance, 1E-2 assert_in_delta 14.43, @half.standard_deviation, 1E-2 assert_in_delta 58.31, @half.standard_deviation_percentage, 1E-2 assert_in_delta 14.50, @half.sample_standard_deviation, 1E-2 assert_in_delta 58.60, @half.sample_standard_deviation_percentage, 1E-2 assert_in_delta 2475, @half.sum, 1E-8 assert_in_delta 0, @half.min, 1E-8 assert_in_delta 99 / 2.0, @half.max, 1E-8 assert_in_delta 12.125, @half.percentile(25), 1E-8 assert_in_delta 24.75, @half.median, 1E-8 assert_in_delta 37.375, @half.percentile(75), 1E-8 assert_equal [10] * 10, counts = @half.histogram(10).counts assert_equal 100, counts.inject { |s, x| s + x } assert @half.linear_regression.residuals.all? { |r| r.abs <= 0.5 } assert_in_delta 1.0, @half.linear_regression.r2, 1E-8 end |
#test_rand ⇒ Object
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# File 'tests/sequence_test.rb', line 215 def test_rand assert_equal 100, @rand.size assert_in_delta 50.84, @rand.mean, 1E-2 assert_in_delta 0.0, @rand.geometric_mean, 1E-8 assert_equal 'NaN', @rand.harmonic_mean.to_s assert_in_delta 976.95, @rand.variance, 1E-2 assert_in_delta 31.25, @rand.standard_deviation, 1E-2 assert_in_delta 61.47, @rand.standard_deviation_percentage, 1E-2 assert_in_delta 31.41, @rand.sample_standard_deviation, 1E-2 assert_in_delta 61.78, @rand.sample_standard_deviation_percentage, 1E-2 assert_in_delta 5084, @rand.sum, 1E-8 assert_in_delta 0, @rand.min, 1E-8 assert_in_delta 98, @rand.max, 1E-8 assert_in_delta 20.25, @rand.percentile(25), 1E-8 assert_in_delta 50.0, @rand.median, 1E-8 assert_in_delta 81, @rand.percentile(75), 1E-8 assert_in_delta 0.05660, @rand.linear_regression.a, 1E-4 assert_in_delta 48.0378, @rand.linear_regression.b, 1E-4 assert @rand.linear_regression.slope_zero? assert_in_delta(-9.9433, @rand_down.linear_regression.a, 1E-4) assert_in_delta 48.0378, @rand_down.linear_regression.b, 1E-4 assert_in_delta 0.9883, @rand_down.linear_regression.r2, 1E-4 assert !@rand_down.linear_regression.slope_zero? assert_in_delta 10.0566, @rand_up.linear_regression.a, 1E-4 assert_in_delta 48.0378, @rand_up.linear_regression.b, 1E-4 assert_in_delta 0.98857, @rand_up.linear_regression.r2, 1E-4 assert !@rand_up.linear_regression.slope_zero? assert_in_delta 60.75, @rand.interquartile_range, 1E-4 assert_nil @rand.detect_outliers assert !@rand.detect_autocorrelation[:detected] assert_equal [11, 14, 7, 9, 8, 7, 5, 11, 13, 15], counts = @rand.histogram(10).counts assert_equal 100, counts.inject { |s, x| s + x } end |
#test_rasi ⇒ Object
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# File 'tests/sequence_test.rb', line 250 def test_rasi assert_equal 100, @rasi.size assert_in_delta 3.48, @rasi.mean, 1E-2 assert_in_delta 0.0, @rasi.geometric_mean, 1E-8 assert_equal 'NaN', @rasi.harmonic_mean.to_s assert_in_delta 1604.67, @rasi.variance, 1E-2 assert_in_delta 40.05, @rasi.standard_deviation, 1E-2 assert_in_delta 1151.07, @rasi.standard_deviation_percentage, 1E-2 assert_in_delta 40.26, @rasi.sample_standard_deviation, 1E-2 assert_in_delta 1156.87, @rasi.sample_standard_deviation_percentage, 1E-2 assert_in_delta 348.007, @rasi.sum, 1E-3 assert_in_delta 92.81, @rasi.max, 1E-2 assert_in_delta(-20.75, @rasi.percentile(25), 1E-2) assert_in_delta 0.0, @rasi.median, 1E-2 assert_in_delta 30.58, @rasi.percentile(75), 1E-2 assert_in_delta(-0.41, @rasi.linear_regression.a, 1E-2) assert_in_delta(23.94, @rasi.linear_regression.b, 1E-2) assert_in_delta 0.0887, @rasi.linear_regression.r2, 1E-4 assert !@rasi.linear_regression.slope_zero? assert_in_delta 51.3401, @rasi.interquartile_range, 1E-4 assert_equal 13, @rasi.detect_outliers[:high] assert @rasi.detect_autocorrelation[:detected] assert_equal [4, 6, 11, 13, 22, 15, 12, 4, 7, 6], counts = @rasi.histogram(10).counts assert_equal 100, counts.inject { |s, x| s + x } end |
#test_refinement ⇒ Object
9 10 11 |
# File 'tests/sequence/refinement_test.rb', line 9 def test_refinement assert_kind_of MoreMath::Sequence, [1,2,3].to_seq end |
#test_sequence_push ⇒ Object
344 345 346 347 348 349 |
# File 'tests/sequence_test.rb', line 344 def test_sequence_push seq = Sequence.new([ 1, 2 ]) seq2 = seq.push 3 assert_not_same seq2, seq assert_equal [ 1, 2, 3 ], seq2.elements end |
#test_z_score ⇒ Object
351 352 353 354 355 356 357 358 359 360 361 |
# File 'tests/sequence_test.rb', line 351 def test_z_score s = MoreMath::Sequence.new( [ 697.195, 913.583, 793.187, 363.926, 111.559, 296.687, 500.225, 303.019, 4.702, 378.132, ] ) assert_equal s.size, s.z_score.size assert_in_delta 276.57, s.z_score.standard_deviation, 1E-2 assert_in_delta 434.64, s.z_score.mean, 1E-2 end |