Class: SequenceTest

Inherits:
Test::Unit::TestCase
  • Object
show all
Includes:
MoreMath
Defined in:
tests/sequence/refinement_test.rb,
tests/sequence_test.rb

Constant Summary

Constants included from MoreMath

MoreMath::Infinity, MoreMath::STD_NORMAL_DISTRIBUTION, MoreMath::VERSION, MoreMath::VERSION_ARRAY, MoreMath::VERSION_BUILD, MoreMath::VERSION_MAJOR, MoreMath::VERSION_MINOR

Instance Method Summary collapse

Instance Method Details

#setupObject



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# File 'tests/sequence_test.rb', line 9

def setup
  @flat = Sequence.new([0.3] * 100)
  @flat_fuzzy = Sequence.new(
    [ 0.291296142070089, 0.398027886480809, 0.23101231921608,
      0.340627534773153, 0.254242992113383, 0.205044980114447,
      0.278185292370019, 0.291682510899134, 0.261657208149687,
      0.259844137242866, 0.378499162508619, 0.229358104972725,
      0.386112073235523, 0.235255070067096, 0.296721262492287,
      0.314698077842112, 0.363272733105109, 0.252507159666997,
      0.24662025484673, 0.267331187480918, 0.250067060724856,
      0.284270210340375, 0.262626100532033, 0.352433737639362,
      0.26289285183689, 0.320853587421585, 0.311156494750873,
      0.334225510831559, 0.356205648289854, 0.390488123286748,
      0.232295923957093, 0.306018392326888, 0.226951061989688,
      0.214593004467917, 0.28960026747272, 0.265265575971784,
      0.281799797229565, 0.337363136532618, 0.342475071004423,
      0.284553882868128, 0.389206786931739, 0.351602477407745,
      0.387218788482334, 0.251003385993573, 0.257866093151574,
      0.328824195781741, 0.328242240833557, 0.318885903421821,
      0.319274078029297, 0.29658003664557, 0.24884905382522,
      0.301770636812583, 0.248911378817175, 0.275471776328434,
      0.220091513752346, 0.283076025940448, 0.388218608044549,
      0.283229339831472, 0.224570945957831, 0.362485839646397,
      0.221550677368212, 0.269482540591461, 0.339070334243095,
      0.325182999080969, 0.308728933369353, 0.3863941656383,
      0.202792339314435, 0.362856265274183, 0.265505144702292,
      0.353077334823915, 0.324128317440701, 0.296975637938554,
      0.331591291884613, 0.205993447724166, 0.214480100701257,
      0.344614724259284, 0.370516595329498, 0.207412716360969,
      0.314721036012706, 0.228984115281106, 0.259032440399333,
      0.326352618555389, 0.353756258146666, 0.230771059239658,
      0.250581960820831, 0.21462520718052, 0.241570172219703,
      0.296495456059297, 0.336874993277199, 0.399203721142938,
      0.330151086176299, 0.327699314698143, 0.235627029696985,
      0.325564466304218, 0.398295977228244, 0.33192554316584,
      0.22526704197204, 0.342117813790757, 0.32678523559579,
      0.214938036987578 ]
  )
  @flat_fuzzy2 = Sequence.new(
    [ 0.234651800685522, 0.291677132057536, 0.381325747665659,
      0.37072453863211, 0.368865699927557, 0.35787506718781,
      0.350720373167135, 0.258635475849321, 0.31707597552194,
      0.307893709010183, 0.237849819950067, 0.315881610046543,
      0.201585641064648, 0.344368312712124, 0.34501166666737,
      0.294042914293632, 0.211771331394304, 0.363815509779845,
      0.33673412152282, 0.37498088769697, 0.201244093764913,
      0.236387765961558, 0.296850838293593, 0.223829530755105,
      0.213694650150962, 0.227416795706971, 0.200625724917622,
      0.31227957802719, 0.385983037604518, 0.287242927867868,
      0.258470258047964, 0.344169516126964, 0.26994416010751,
      0.249768846393261, 0.354426097251265, 0.34021066927398,
      0.307077285175548, 0.3497224779728, 0.254650791783532,
      0.285180048375893, 0.201603698883297, 0.314417350151038,
      0.320909639401826, 0.287679809618447, 0.328814685203504,
      0.370476190838299, 0.291359505243309, 0.273781936455096,
      0.325113918862285, 0.367110740063297, 0.247073598694453,
      0.350942986897521, 0.232261700593331, 0.236635735267053,
      0.240796903369692, 0.323428956239516, 0.324614910738737,
      0.237871567371432, 0.310816928958706, 0.264609945655404,
      0.236819188672949, 0.28398352994042, 0.366840181124702,
      0.339882426068036, 0.397478482750453, 0.379375601208701,
      0.281206116730092, 0.203947998858132, 0.231558650797902,
      0.380785793096893, 0.334270739370193, 0.266229655641688,
      0.315762224650585, 0.243378114262551, 0.294001949668671,
      0.247508966656796, 0.382845661950797, 0.369479413879656,
      0.241683415140724, 0.218541361179393, 0.319914186441019,
      0.310250120051708, 0.234697684147101, 0.34734046492662,
      0.218217334366937, 0.312537298293074, 0.374319776312122,
      0.392178633368011, 0.314428694398314, 0.386204177791726,
      0.359061970124816, 0.362334074442194, 0.229293408035385,
      0.313763536361359, 0.239344793134688, 0.265237324138875,
      0.329259743982286, 0.351767216150251, 0.211193779699827,
      0.258235773260784 ]
  )
  @flat_higher = Sequence.new(
    [ 0.417776755544947, 0.326476805772892, 0.332887733006402,
      0.410565271773857, 0.426114386030809, 0.435935520406595,
      0.339995159533461, 0.364761157546518, 0.378397233333935,
      0.35210733002035, 0.330688506187733, 0.492648864412129,
      0.33833199089868, 0.42789271416588, 0.302423735510181,
      0.305407403523733, 0.408725319360953, 0.444623946541953,
      0.494162827022184, 0.386239353430498, 0.306437290600178,
      0.376703331326491, 0.419906847790677, 0.301955977987602,
      0.487468198801442, 0.312290516021979, 0.495906290662686,
      0.303379939018008, 0.460384318463054, 0.473534870478338,
      0.333912270251847, 0.460143618655486, 0.419257177279749,
      0.355072829732943, 0.453419475031392, 0.468523177257953,
      0.405173514106214, 0.490981451264441, 0.333761262319564,
      0.405754543238307, 0.495673694657207, 0.302783349166472,
      0.432418922874345, 0.329915804259514, 0.356588738342812,
      0.354349707229742, 0.452693480248568, 0.474877692732008,
      0.405383243600942, 0.402915847080871, 0.492915699075631,
      0.462094206093751, 0.339883346924172, 0.451846443788079,
      0.464163288957183, 0.405878012725365, 0.467568948869427,
      0.419585038305752, 0.422900365624952, 0.494116259378179,
      0.300073213028546, 0.474018244228735, 0.38822872923958,
      0.441707083196939, 0.406814346112675, 0.403958151779294,
      0.307247538830431, 0.409650643221185, 0.493148685003474,
      0.36058138779566, 0.36321317486353, 0.393068747347969,
      0.468879326612198, 0.425234138346863, 0.421949132207673,
      0.306005645410334, 0.439055703332639, 0.317183300984821,
      0.470848293063698, 0.440820107004846, 0.438285035336276,
      0.434787376714648, 0.453596753001295, 0.399893734859051,
      0.458116608707833, 0.330973155542121, 0.31666421784907,
      0.467682075506155, 0.452806591013364, 0.379423936292945,
      0.357212688143182, 0.385848611013958, 0.349586136874291,
      0.46683976269393, 0.484776275752459, 0.30829081820033,
      0.41637633029041, 0.350847171677106, 0.416615749876575,
      0.382674729559805 ]
  )
  @half = Sequence.new(Array.new(100) { |i| 0.5 * i })
  @rand = Sequence.new(rand = [
    97, 26, 9, 78, 15, 86, 82, 24, 57, 67, 46, 86, 28,
    50, 71, 92, 18, 19, 16, 70, 80, 45, 26, 4, 16, 55, 15,
    94, 12, 73, 89, 97, 10, 2, 77, 35, 76, 46, 48, 31, 39,
    52, 82, 53, 88, 90, 1, 39, 77, 71, 37, 37, 50, 19, 60,
    48, 0, 13, 62, 34, 90, 28, 42, 9, 63, 82, 43, 98, 86,
    3, 94, 5, 79, 11, 16, 0, 90, 81, 42, 64, 76, 92, 25,
    3, 90, 51, 15, 0, 74, 98, 93, 90, 14, 81, 85, 28, 30,
    73, 32, 88])
  @rand_up = Sequence.new(Array.new(rand.size) { |i| rand[i] + 10 * i })
  @rand_down = Sequence.new(Array.new(rand.size) { |i| rand[i] - 10 * i })
  @rasi = Sequence.new(
    [ 0.0, 11.7813239550446, 23.8742291678261, 0.368124552684678,
    20.233654312272, 7.64120827980215, 61.609239533582, 69.346191849821,
    66.7019061146592, 26.2399845215146, 2.85316954888546, 29.4686175218607,
    15.9684276548523, 15.9684276548523, 36.3446282769615, 66.5739561406607,
    85.9585699842718, 75.9895132951814, 9.24615891330947, 7.53001816521557,
    22.335839587114, 32.2774961648149, 31.2905869781976, 15.1700831170561,
    6.1413284446509, -2.95898288510399e-14, -4.63732964187926,
    -2.2382089844837, -2.20874731610807, -0.0, -20.5724838302366,
    -60.2401453217246, -39.2961753815653, -59.9472827106431,
    -47.051006728233, -4.75528258147577, -20.6280322653025, -43.913176050844,
    -78.8441115458335, -30.4509047725893, -38.0422606518061,
    -77.8151265120777, -4.22163962751007, -32.3615561965831,
    -42.4419205675787, -40.5571824081806, -6.2627977633223,
    -5.52186829027017, -6.96331684061593, -10.4026583858372,
    3.8595428936139e-15, 9.0239928166299, 12.9318741325725, 34.9718325050444,
    46.7301063878664, 49.3739611925678, 58.1865040039386, 30.8205297110316,
    36.3061007965867, 29.8592927313786, 88.4482560154493, 54.0257987900779,
    16.9664543832806, 92.8164857438293, 62.8663840466361, 78.9376908524978,
    41.6220444134369, 78.5224970716874, 35.4436091676863, 66.4010692750828,
    14.6946313073118, 19.2701469640686, 31.6587115308823, 15.1700831170561,
    1.25333233564304, 1.83690953073357e-15, -4.76266287544359,
    -17.6569819887047, -12.1481102385944, -39.5038012763407,
    -20.5724838302365, -28.0664313430763, -20.8038575549463,
    -10.1319351060242, -10.8579246295922, -33.2869780703304,
    -77.6006928075664, -21.956588025422, -44.9112027792722,
    -56.9726605422639, -19.0211303259031, -80.5296076694757,
    -15.1979026590363, -51.6243872659778, -45.1801089912934,
    -54.6640284631999, -17.3431322676617, -21.719348608396, -11.937114583913,
    -3.38399730623621 ]
  )
  @rasi_mean = Sequence.new([ 3.48 ] * 100)
  @book = Sequence.new(
    [ 47, 64, 23, 71, 38, 64, 55, 41, 59, 48, 71, 35, 57, 40, 58,
      44, 89, 55, 37, 74, 51, 57, 50, 60, 45, 57, 50, 45, 25, 59,
      50, 71, 56, 74, 50, 58, 45, 54, 36, 54, 48, 55, 45, 57, 50,
      62, 44, 64, 43, 52, 38, 59, 55, 41, 53, 49, 34, 35, 54, 45,
      68, 38, 50, 60, 39, 59, 40, 57, 54, 23 ]
  )
end

#test_bookObject



277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# File 'tests/sequence_test.rb', line 277

def test_book
  assert_equal 70, @book.size
  assert_in_delta 51.25, @book.mean, 1E-2
  assert_in_delta 49.70, @book.geometric_mean, 1E-2
  assert_in_delta 47.98, @book.harmonic_mean, 1E-2
  assert_in_delta 148.36, @book.variance, 1E-2
  assert_in_delta 12.18, @book.standard_deviation, 1E-2
  assert_in_delta 23.76, @book.standard_deviation_percentage, 1E-2
  assert_in_delta 12.26, @book.sample_standard_deviation, 1E-2
  assert_in_delta 23.93, @book.sample_standard_deviation_percentage, 1E-2
  assert_in_delta 3588.0, @book.sum, 1E-2
  assert_in_delta 23, @book.min, 1E-2
  assert_in_delta 89, @book.max, 1E-2
  assert_in_delta(43.75, @book.percentile(25), 1E-2)
  assert_in_delta 51.5, @book.median, 1E-2
  assert_in_delta 58.25, @book.percentile(75), 1E-2
  assert_in_delta(-0.0952, @book.linear_regression.a, 1E-4)
  assert_in_delta(54.5420, @book.linear_regression.b, 1E-4)
  assert @book.linear_regression.slope_zero?
  assert_in_delta 0.0249, @book.linear_regression.r2, 1E-4
  assert_in_delta 14.5, @book.interquartile_range, 1E-4
  assert_equal 7, @book.detect_outliers[:high]
  ought = [1.0, -0.39, 0.3, -0.17, 0.07, -0.10, 0.05, 0.04, -0.04, -0.01,
    0.01, 0.11, -0.07, 0.15, 0.04, -0.01
  ]
  @book.autocorrelation[0, ought.size].zip(ought) do |x, x_o|
    assert_in_delta x, x_o, 8E-2
  end
  assert @book.detect_autocorrelation(10)[:detected]
  assert_equal [3, 4, 9, 12, 18, 14, 4, 5, 0, 1],
    counts = @book.histogram(10).counts
  assert_equal 70, counts.inject { |s, x| s + x }
  assert @flat.linear_regression.residuals.all? { |r| r.abs <= 1E-6 }
end

#test_coverObject



312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# File 'tests/sequence_test.rb', line 312

def test_cover
  assert @flat.cover?(@flat)
  assert @flat_fuzzy2.cover?(@flat_fuzzy2)
  assert @flat_fuzzy.cover?(@flat_fuzzy)
  assert @flat.cover?(@flat_fuzzy)
  assert_operator @flat.suggested_sample_size(@flat_fuzzy), '>', 1000
  assert @flat.cover?(@flat_fuzzy2)
  assert_operator @flat.suggested_sample_size(@flat_fuzzy2), '>', 9000
  assert @flat_fuzzy.cover?(@flat)
  assert_operator @flat_fuzzy.suggested_sample_size(@flat), '>', 1000
  assert @flat_fuzzy2.cover?(@flat)
  assert_operator @flat_fuzzy2.suggested_sample_size(@flat), '>', 9000
  assert !@flat.cover?(@flat_higher)
  assert !@flat_higher.cover?(@flat)
  assert !@flat_fuzzy.cover?(@flat_higher)
  assert !@flat_fuzzy2.cover?(@flat_higher)
  assert !@flat_higher.cover?(@flat_fuzzy)
  assert !@flat_higher.cover?(@flat_fuzzy2)
  assert @flat_fuzzy.cover?(@flat_fuzzy2)
  assert_operator @flat_fuzzy.suggested_sample_size(@flat_fuzzy2), '>', 4000
  assert @flat_fuzzy2.cover?(@flat_fuzzy)
  assert_operator @flat_fuzzy2.suggested_sample_size(@flat_fuzzy), '>', 4000
  assert @rasi.cover?(@rasi_mean)
  assert_operator @rasi.suggested_sample_size(@rasi_mean), '>', 10_000
  assert @rasi_mean.cover?(@rasi)
  assert_operator @rasi_mean.suggested_sample_size(@rasi), '>', 10_000
  assert @rasi.cover?(@flat)
  assert_operator @rasi.suggested_sample_size(@flat), '>', 500
  assert @flat.cover?(@rasi)
  assert_operator @flat.suggested_sample_size(@rasi), '>', 500
end

#test_flatObject



172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# File 'tests/sequence_test.rb', line 172

def test_flat
  assert_equal 100, @flat.size
  assert_in_delta 0.3, @flat.mean, 1E-8
  assert_in_delta 0.3, @flat.geometric_mean, 1E-8
  assert_in_delta 0.3, @flat.harmonic_mean, 1E-8
  assert_in_delta 0, @flat.variance, 1E-8
  assert_in_delta 0, @flat.standard_deviation, 1E-8
  assert_in_delta 0, @flat.standard_deviation_percentage, 1E-8
  assert_in_delta 0, @flat.sample_standard_deviation, 1E-8
  assert_in_delta 0, @flat.sample_standard_deviation_percentage, 1E-8
  assert_in_delta 30, @flat.sum, 1E-8
  assert_in_delta 0.3, @flat.min, 1E-8
  assert_in_delta 0.3, @flat.max, 1E-8
  assert_in_delta 0.3, @flat.percentile(25), 1E-8
  assert_in_delta 0.3, @flat.median, 1E-8
  assert_in_delta 0.3, @flat.percentile(75), 1E-8
  assert_equal 100, @flat.histogram(10).each_bin.first.count
  assert @flat.linear_regression.residuals.all? { |r| r.abs <= 1E-6 }
  assert_in_delta 0.0, @flat.linear_regression.r2, 1E-8
end

#test_halfObject



193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# File 'tests/sequence_test.rb', line 193

def test_half
  assert_equal 100, @half.size
  assert_in_delta 24.75, @half.mean, 1E-8
  assert_in_delta 0.0, @half.geometric_mean, 1E-8
  assert_equal 'NaN', @half.harmonic_mean.to_s
  assert_in_delta 208.31, @half.variance, 1E-2
  assert_in_delta 14.43, @half.standard_deviation, 1E-2
  assert_in_delta 58.31, @half.standard_deviation_percentage, 1E-2
  assert_in_delta 14.50, @half.sample_standard_deviation, 1E-2
  assert_in_delta 58.60, @half.sample_standard_deviation_percentage, 1E-2
  assert_in_delta 2475, @half.sum, 1E-8
  assert_in_delta 0, @half.min, 1E-8
  assert_in_delta 99 / 2.0, @half.max, 1E-8
  assert_in_delta 12.125, @half.percentile(25), 1E-8
  assert_in_delta 24.75, @half.median, 1E-8
  assert_in_delta 37.375, @half.percentile(75), 1E-8
  assert_equal [10] * 10, counts = @half.histogram(10).counts
  assert_equal 100, counts.inject { |s, x| s + x }
  assert @half.linear_regression.residuals.all? { |r| r.abs <= 0.5 }
  assert_in_delta 1.0, @half.linear_regression.r2, 1E-8
end

#test_randObject



215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# File 'tests/sequence_test.rb', line 215

def test_rand
  assert_equal 100, @rand.size
  assert_in_delta 50.84, @rand.mean, 1E-2
  assert_in_delta 0.0, @rand.geometric_mean, 1E-8
  assert_equal 'NaN', @rand.harmonic_mean.to_s
  assert_in_delta 976.95, @rand.variance, 1E-2
  assert_in_delta 31.25, @rand.standard_deviation, 1E-2
  assert_in_delta 61.47, @rand.standard_deviation_percentage, 1E-2
  assert_in_delta 31.41, @rand.sample_standard_deviation, 1E-2
  assert_in_delta 61.78, @rand.sample_standard_deviation_percentage, 1E-2
  assert_in_delta 5084, @rand.sum, 1E-8
  assert_in_delta 0, @rand.min, 1E-8
  assert_in_delta 98, @rand.max, 1E-8
  assert_in_delta 20.25, @rand.percentile(25), 1E-8
  assert_in_delta 50.0, @rand.median, 1E-8
  assert_in_delta 81, @rand.percentile(75), 1E-8
  assert_in_delta 0.05660, @rand.linear_regression.a, 1E-4
  assert_in_delta 48.0378, @rand.linear_regression.b, 1E-4
  assert @rand.linear_regression.slope_zero?
  assert_in_delta(-9.9433, @rand_down.linear_regression.a, 1E-4)
  assert_in_delta 48.0378, @rand_down.linear_regression.b, 1E-4
  assert_in_delta 0.9883, @rand_down.linear_regression.r2, 1E-4
  assert !@rand_down.linear_regression.slope_zero?
  assert_in_delta 10.0566, @rand_up.linear_regression.a, 1E-4
  assert_in_delta 48.0378, @rand_up.linear_regression.b, 1E-4
  assert_in_delta 0.98857, @rand_up.linear_regression.r2, 1E-4
  assert !@rand_up.linear_regression.slope_zero?
  assert_in_delta 60.75, @rand.interquartile_range, 1E-4
  assert_nil @rand.detect_outliers
  assert !@rand.detect_autocorrelation[:detected]
  assert_equal [11, 14, 7, 9, 8, 7, 5, 11, 13, 15],
    counts = @rand.histogram(10).counts
  assert_equal 100, counts.inject { |s, x| s + x }
end

#test_rasiObject



250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# File 'tests/sequence_test.rb', line 250

def test_rasi
  assert_equal 100, @rasi.size
  assert_in_delta 3.48, @rasi.mean, 1E-2
  assert_in_delta 0.0, @rasi.geometric_mean, 1E-8
  assert_equal 'NaN', @rasi.harmonic_mean.to_s
  assert_in_delta 1604.67, @rasi.variance, 1E-2
  assert_in_delta 40.05, @rasi.standard_deviation, 1E-2
  assert_in_delta 1151.07, @rasi.standard_deviation_percentage, 1E-2
  assert_in_delta 40.26, @rasi.sample_standard_deviation, 1E-2
  assert_in_delta 1156.87, @rasi.sample_standard_deviation_percentage, 1E-2
  assert_in_delta 348.007, @rasi.sum, 1E-3
  assert_in_delta 92.81, @rasi.max, 1E-2
  assert_in_delta(-20.75, @rasi.percentile(25), 1E-2)
  assert_in_delta 0.0, @rasi.median, 1E-2
  assert_in_delta 30.58, @rasi.percentile(75), 1E-2
  assert_in_delta(-0.41, @rasi.linear_regression.a, 1E-2)
  assert_in_delta(23.94, @rasi.linear_regression.b, 1E-2)
  assert_in_delta 0.0887, @rasi.linear_regression.r2, 1E-4
  assert !@rasi.linear_regression.slope_zero?
  assert_in_delta 51.3401, @rasi.interquartile_range, 1E-4
  assert_equal 13, @rasi.detect_outliers[:high]
  assert @rasi.detect_autocorrelation[:detected]
  assert_equal [4, 6, 11, 13, 22, 15, 12, 4, 7, 6],
    counts = @rasi.histogram(10).counts
  assert_equal 100, counts.inject { |s, x| s + x }
end

#test_refinementObject



9
10
11
# File 'tests/sequence/refinement_test.rb', line 9

def test_refinement
  assert_kind_of MoreMath::Sequence, [1,2,3].to_seq
end

#test_sequence_pushObject



344
345
346
347
348
349
# File 'tests/sequence_test.rb', line 344

def test_sequence_push
  seq = Sequence.new([ 1, 2 ])
  seq2 = seq.push 3
  assert_not_same seq2, seq
  assert_equal [ 1, 2, 3 ], seq2.elements
end

#test_z_scoreObject



351
352
353
354
355
356
357
358
359
360
361
# File 'tests/sequence_test.rb', line 351

def test_z_score
  s = MoreMath::Sequence.new(
    [
      697.195, 913.583, 793.187, 363.926, 111.559, 296.687, 500.225,
      303.019, 4.702, 378.132,
    ]
  )
  assert_equal s.size, s.z_score.size
  assert_in_delta 276.57, s.z_score.standard_deviation, 1E-2
  assert_in_delta 434.64, s.z_score.mean, 1E-2
end